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Background and Objectives: Accurate daily river flow forecasting
particularly in  humid catchments characterized by dynamic
hydrological regimes plays a vital role in sustainable water resources
management, hydrological planning, and flood risk mitigation. In recent
years, soft computing—based models, including machine learning and
deep learning approaches, have garnered significant attention in water
engineering due to their inherent capacity to capture complex,
nonlinear, nonstationary, and multivariate relationships. However,
empirical evidence indicates that a systematic and comparative
evaluation of advanced artificial intelligence models especially under
humid catchment conditions and at daily temporal resolution remains
insufficient. This research gap not only limits a comprehensive
understanding of the strengths and limitations of each method but also
poses serious challenges to the transferability, robustness, and
operational reliability of these models in practical decision-making. To
address this gap, the present study evaluates and compares the
performance of machine learning and deep learning models for daily
river flow prediction, with a specific focus on a humid basin subject to
climate variability, thereby clarifying methodological innovations and
operational applicability of these Al-driven approaches.

Materials and Methods: In this study, daily meteorological and
hydrometric data spanning the period from 1969 to 2018 were first
collected. Precipitation (P,), evaporation (E,), and river flow discharge
with one- to three-day lags (Q:; to Q.3) were used as input variables.
Pearson correlation coefficients were calculated between input and
output variables, based on which five input scenarios and model
configurations were selected. Data preprocessing (including
homogenization, outlier removal, reconstruction of missing values, and
normalization) was performed, and the dataset was split into training
and testing subsets in a 70:30 ratio. For modeling, one machine learning
algorithm Support Vector Regression (SVR) and two deep learning
models Convolutional Neural Network (CNN) and Generative
Adversarial Network (GAN) were employed. Model performance was
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evaluated using multiple metrics: Coefficient of determination (R?),
Root Mean Square Error (RMSE), Percent Bias (PBIAS), and Kling—
Gupta Efficiency (KGE). The results were compared in tabular form,
and final outcomes were visually presented using scatter, time series,
violin plot, and Taylor diagrams.

Results: The results indicated that SVR model achieved the best
performance in Scenario 5 (SN5), yielding R? of 0.85, RMSE of 5.675
m3/s, PBIAS close to zero (0.475%), and KGE of 0.877 during the
testing phase. In this scenario, SVR outperformed the CNN and GAN
models by 3.8% and 3.4% in terms of R2, and by 14.1% and 14.0% in
terms of KGE, respectively. Moreover, the CNN and GAN models
demonstrated acceptable performance only in the more complex
scenarios (SN to SNs), while exhibiting poor results in the simpler
scenarios (SN; and SN,), with R2 values below 0.04. Overall, SVR with
the optimal input combination (SNs) provided the most stable and
accurate predictions, showing statistically significant superiority over
the other two models across all effective scenarios.

Conclusion: In daily river discharge forecasting within highly variable
basins, model input structure exerts a far greater influence than
algorithmic complexity so much that excluding lagged discharge values
led to complete predictive failure (R? < 0.04), even when employing
deep learning architectures. Among the evaluated models, Support
Vector Regression (SVR) under the optimal scenario (SN5) achieved
the most accurate and unbiased performance in the testing phase, with
R? = 0.850, RMSE = 5.675 m%s, and PBIAS = 0.475%, significantly
outperforming both CNN and GAN. These findings substantiate a
fundamental principle in hydroinformatics: Under conditions of limited
data and high climatic stress, model selection should be guided by
alignment with the hydrological character of the data, rather than by
algorithmic novelty alone, a conclusion with direct implications for
designing operational forecasting systems and adaptive water
governance in vulnerable regions.

Cite this article: Maroofinia, E., Esmat Sa‘atloo, S.M., Shakoft, S.,& Yazdanimehr, R. (2025). Performance
evaluation of soft computing-based methods for daily streamflow prediction. Climate and Ecosystem of Arid
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Table 1. Model configurations and research scenarios
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Scenario Input Variables Output Variable

SN, P(t) Q(t)

SN, E(®), P(1) Q(t)

SN3 E(), P(t), Q(t-3) Q(t)

SNy Q(t-1), Q(t-2), Q(t-3) Q(t)

SN E(). P(), Q(t-1), Q(t-2), Q(t-3) Q)
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Table 2. Summary of statistical parameters for the study area based on the entire dataset
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Statistical parameters of the study area for the entire dataset
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. 240 0
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e 460 0
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Table 3. Model evaluation metrics
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(MAE) b= lls ;06 - SKils 1%
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RMSE) s Solas o £ Ske 4 =
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MAPE) ; Lo - Kl - i = Qsim.i
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Table 4. Performance results of research models in two phases of training and testing

L g3 5l (70%) 50l sl b (309%6) & 3051 ol 3
Scenarios Training Process Testing Process
R? RMSE (m%/s) PBIAS (%) KGE (%) R? RMSE (m¥/s) PBIAS (%) KGE (%)
CNN model
SN, 0.005 14.7 8.150 0.310 0.005 14.834 7.169 -0.310
SN, 0.011 14.603 6.501 0.242 0.0109 14.913 5.939 -0.247
SN; 0.804 7.288 17.255 0.773 0.774 7.746 16.91 0.784
SNy 0.848 5.983 -2.794 0.787 0.799 6.847 -0.3011 0.764
SNg 0.821 6.486 10.903 0.854 0.818 6.587 9.867 0.862
GAN model
SN, 0.021 14.597 0.300 0.187 0.018 14.674 1.267 -0.200
SN, 0.037 14.389 4.189 0.146 0.035 14.748 4.701 -0.155
SN3 0.822 6.433 -5.752 0.796 0.847 5.717 -5.156 0.816
SNy 0.829 6.287 -4.349 0.795 0.823 6.270 -3.330 0.792
SN;s 0.830 6.138 8.763 0.807 0.813 6.586 0.784 8.882
SVR model
SN; 0.021 14.641 -0.190 0.207 0.012 14.596 0.129 0.231
SN, 0.0841 14.221 0.035 0.065 0.043 14.359 0.131 0.121
SN3 0.845 6.061 0.053 0.788 0.807 6.633 0.253 0.766
SNy 0.898 4.738 0.075 0.903 0.828 6.085 0.562 0.863
SN;s 0.915 4.323 0.032 0.915 0.850 5.675 0.475 0.877
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Scatter Plots (SVR)
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Fig. 3. Scatter plot between predicted and observed data of the SVR model
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Fig. 4 Time series plot of observed and predicted data (SVR)
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Error Histograms with Normal Distribution (SVR)
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Fig. 5 Histogram of errors and frequency distribution of the SVR model
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Fig. 8 Scatter plot between observed and predicted values of CNN model during the training and testing phases
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Fig. 9 Scatter plot of predicted and observed values of the GAN model
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